skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Abuoliem, Dima"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Multifunctional nanosurfaces receive growing attention due to their versatile properties. Capillary force lithography (CFL) has emerged as a simple and economical method for fabricating these surfaces. In recent works, the authors proposed to leverage the evolution strategies (ES) to modify nanosurface characteristics with CFL to achieve specific functionalities such as frictional, optical, and bactericidal properties. For artificial intelligence (AI)-driven inverse design, earlier research integrates basic multiphysics principles such as dynamic viscosity, air diffusivity, surface tension, and electric potential with backward deep learning (DL) on the framework of ES. As a successful alternative to reinforcement learning, ES performed well for the AI-driven inverse design. However, the computational limitations of ES pose a critical technical challenge to achieving fast and efficient design. This paper addresses the challenges by proposing a parallel-computing-based ES (named parallel ES). The parallel ES demonstrated the desired speed and scalability, accelerating the AI-driven inverse design of multifunctional nanopatterned surfaces. Detailed parallel ES algorithms and cost models are presented, showing its potential as a promising tool for advancing AI-driven nanomanufacturing. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026